home
***
CD-ROM
|
disk
|
FTP
|
other
***
search
/
Almathera Ten Pack 3: CDPD 3
/
Almathera Ten on Ten - Disc 3: CDPD3.iso
/
fish
/
001-100
/
001-025
/
023
/
ver30
/
display.c
< prev
next >
Wrap
C/C++ Source or Header
|
1995-03-17
|
20KB
|
766 lines
/*
* Name: MicroEMACS
* Gosling style redisplay.
* Version: 30
* Last edit: 10-Feb-86
* By: rex::conroy
* decvax!decwrl!dec-rhea!dec-rex!conroy
*
* The functions in this file handle redisplay. The
* redisplay system knows almost nothing about the editing
* process; the editing functions do, however, set some
* hints to eliminate a lot of the grinding. There is more
* that can be done; the "vtputc" interface is a real
* pig. Two conditional compilation flags; the GOSLING
* flag enables dynamic programming redisplay, using the
* algorithm published by Jim Gosling in SIGOA. The MEMMAP
* changes things around for memory mapped video. With
* both off, the terminal is a VT52.
*/
#include "def.h"
/*
* You can change these back to the types
* implied by the name if you get tight for space. If you
* make both of them "int" you get better code on the VAX.
* They do nothing if this is not Gosling redisplay, except
* for change the size of a structure that isn't used.
* A bit of a cheat.
*/
#define XCHAR int
#define XSHORT int
/*
* A video structure always holds
* an array of characters whose length is equal to
* the longest line possible. Only some of this is
* used if "ncol" isn't the same as "NCOL".
*/
typedef struct {
short v_hash; /* Hash code, for compares. */
short v_flag; /* Flag word. */
short v_color; /* Color of the line. */
XSHORT v_cost; /* Cost of display. */
char v_text[NCOL]; /* The actual characters. */
} VIDEO;
#define VFCHG 0x0001 /* Changed. */
#define VFHBAD 0x0002 /* Hash and cost are bad. */
/*
* SCORE structures hold the optimal
* trace trajectory, and the cost of redisplay, when
* the dynamic programming redisplay code is used.
* If no fancy redisplay, this isn't used. The trace index
* fields can be "char", and the score a "short", but
* this makes the code worse on the VAX.
*/
typedef struct {
XCHAR s_itrace; /* "i" index for track back. */
XCHAR s_jtrace; /* "j" index for trace back. */
XSHORT s_cost; /* Display cost. */
} SCORE;
int sgarbf = TRUE; /* TRUE if screen is garbage. */
int vtrow = 0; /* Virtual cursor row. */
int vtcol = 0; /* Virtual cursor column. */
int tthue = CNONE; /* Current color. */
int ttrow = HUGE; /* Physical cursor row. */
int ttcol = HUGE; /* Physical cursor column. */
int tttop = HUGE; /* Top of scroll region. */
int ttbot = HUGE; /* Bottom of scroll region. */
VIDEO *vscreen[NROW-1]; /* Edge vector, virtual. */
VIDEO *pscreen[NROW-1]; /* Edge vector, physical. */
VIDEO video[2*(NROW-1)]; /* Actual screen data. */
VIDEO blanks; /* Blank line image. */
#if GOSLING
/*
* This matrix is written as an array because
* we do funny things in the "setscores" routine, which
* is very compute intensive, to make the subscripts go away.
* It would be "SCORE score[NROW][NROW]" in old speak.
* Look at "setscores" to understand what is up.
*/
SCORE score[NROW*NROW];
#endif
/*
* Initialize the data structures used
* by the display code. The edge vectors used
* to access the screens are set up. The operating
* system's terminal I/O channel is set up. Fill the
* "blanks" array with ASCII blanks. The rest is done
* at compile time. The original window is marked
* as needing full update, and the physical screen
* is marked as garbage, so all the right stuff happens
* on the first call to redisplay.
*/
vtinit()
{
register VIDEO *vp;
register int i;
ttopen();
ttinit();
vp = &video[0];
for (i=0; i<NROW-1; ++i) {
vscreen[i] = vp;
++vp;
pscreen[i] = vp;
++vp;
}
blanks.v_color = CTEXT;
for (i=0; i<NCOL; ++i)
blanks.v_text[i] = ' ';
}
/*
* Tidy up the virtual display system
* in anticipation of a return back to the host
* operating system. Right now all we do is position
* the cursor to the last line, erase the line, and
* close the terminal channel.
*/
vttidy()
{
ttcolor(CTEXT);
ttnowindow(); /* No scroll window. */
ttmove(nrow-1, 0); /* Echo line. */
tteeol();
tttidy();
ttflush();
ttclose();
}
/*
* Move the virtual cursor to an origin
* 0 spot on the virtual display screen. I could
* store the column as a character pointer to the spot
* on the line, which would make "vtputc" a little bit
* more efficient. No checking for errors.
*/
vtmove(row, col)
{
vtrow = row;
vtcol = col;
}
/*
* Write a character to the virtual display,
* dealing with long lines and the display of unprintable
* things like control characters. Also expand tabs every 8
* columns. This code only puts printing characters into
* the virtual display image. Special care must be taken when
* expanding tabs. On a screen whose width is not a multiple
* of 8, it is possible for the virtual cursor to hit the
* right margin before the next tab stop is reached. This
* makes the tab code loop if you are not careful.
* Three guesses how we found this.
*/
vtputc(c)
register int c;
{
register VIDEO *vp;
vp = vscreen[vtrow];
if (vtcol >= ncol)
vp->v_text[ncol-1] = '$';
else if (c == '\t') {
do {
vtputc(' ');
} while (vtcol<ncol && (vtcol&0x07)!=0);
} else if (ISCTRL(c) != FALSE) {
vtputc('^');
vtputc(c ^ 0x40);
} else
vp->v_text[vtcol++] = c;
}
/*
* Erase from the end of the
* software cursor to the end of the
* line on which the software cursor is
* located. The display routines will decide
* if a hardware erase to end of line command
* should be used to display this.
*/
vteeol()
{
register VIDEO *vp;
vp = vscreen[vtrow];
while (vtcol < ncol)
vp->v_text[vtcol++] = ' ';
}
/*
* Make sure that the display is
* right. This is a three part process. First,
* scan through all of the windows looking for dirty
* ones. Check the framing, and refresh the screen.
* Second, make sure that "currow" and "curcol" are
* correct for the current window. Third, make the
* virtual and physical screens the same.
*/
VOID update()
{
register LINE *lp;
register WINDOW *wp;
register VIDEO *vp1;
register VIDEO *vp2;
register int i;
register int j;
register int c;
register int hflag;
register int currow;
register int curcol;
register int offs;
register int size;
VOID traceback ();
VOID uline ();
if (curmsgf!=FALSE || newmsgf!=FALSE) {
wp = wheadp;
while (wp != NULL) {
wp->w_flag |= WFMODE; /* Must do mode lines. */
wp = wp->w_wndp;
}
}
curmsgf = newmsgf; /* Sync. up right now. */
hflag = FALSE; /* Not hard. */
wp = wheadp;
while (wp != NULL) {
if (wp->w_flag != 0) { /* Need update. */
if ((wp->w_flag&WFFORCE) == 0) {
lp = wp->w_linep;
for (i=0; i<wp->w_ntrows; ++i) {
if (lp == wp->w_dotp)
goto out;
if (lp == wp->w_bufp->b_linep)
break;
lp = lforw(lp);
}
}
i = wp->w_force; /* Reframe this one. */
if (i > 0) {
--i;
if (i >= wp->w_ntrows)
i = wp->w_ntrows-1;
} else if (i < 0) {
i += wp->w_ntrows;
if (i < 0)
i = 0;
} else
i = wp->w_ntrows/2;
lp = wp->w_dotp;
while (i!=0 && lback(lp)!=wp->w_bufp->b_linep) {
--i;
lp = lback(lp);
}
wp->w_linep = lp;
wp->w_flag |= WFHARD; /* Force full. */
out:
lp = wp->w_linep; /* Try reduced update. */
i = wp->w_toprow;
if ((wp->w_flag&~WFMODE) == WFEDIT) {
while (lp != wp->w_dotp) {
++i;
lp = lforw(lp);
}
vscreen[i]->v_color = CTEXT;
vscreen[i]->v_flag |= (VFCHG|VFHBAD);
vtmove(i, 0);
for (j=0; j<llength(lp); ++j)
vtputc(lgetc(lp, j));
vteeol();
} else if ((wp->w_flag&(WFEDIT|WFHARD)) != 0) {
hflag = TRUE;
while (i < wp->w_toprow+wp->w_ntrows) {
vscreen[i]->v_color = CTEXT;
vscreen[i]->v_flag |= (VFCHG|VFHBAD);
vtmove(i, 0);
if (lp != wp->w_bufp->b_linep) {
for (j=0; j<llength(lp); ++j)
vtputc(lgetc(lp, j));
lp = lforw(lp);
}
vteeol();
++i;
}
}
if ((wp->w_flag&WFMODE) != 0)
modeline(wp);
wp->w_flag = 0;
wp->w_force = 0;
}
wp = wp->w_wndp;
}
lp = curwp->w_linep; /* Cursor location. */
currow = curwp->w_toprow;
while (lp != curwp->w_dotp) {
++currow;
lp = lforw(lp);
}
curcol = 0;
i = 0;
while (i < curwp->w_doto) {
c = lgetc(lp, i++);
if (c == '\t')
curcol |= 0x07;
else if (ISCTRL(c) != FALSE)
++curcol;
++curcol;
}
if (curcol >= ncol) /* Long line. */
curcol = ncol-1;
if (sgarbf != FALSE) { /* Screen is garbage. */
sgarbf = FALSE; /* Erase-page clears */
epresf = FALSE; /* the message area. */
tttop = HUGE; /* Forget where you set */
ttbot = HUGE; /* scroll region. */
tthue = CNONE; /* Color unknown. */
ttmove(0, 0);
tteeop();
for (i=0; i<nrow-1; ++i) {
uline(i, vscreen[i], &blanks);
ucopy(vscreen[i], pscreen[i]);
}
ttmove(currow, curcol);
ttflush();
return;
}
#if GOSLING
if (hflag != FALSE) { /* Hard update? */
for (i=0; i<nrow-1; ++i) { /* Compute hash data. */
hash(vscreen[i]);
hash(pscreen[i]);
}
offs = 0; /* Get top match. */
while (offs != nrow-1) {
vp1 = vscreen[offs];
vp2 = pscreen[offs];
if (vp1->v_color != vp2->v_color
|| vp1->v_hash != vp2->v_hash)
break;
uline(offs, vp1, vp2);
ucopy(vp1, vp2);
++offs;
}
if (offs == nrow-1) { /* Might get it all. */
ttmove(currow, curcol);
ttflush();
return;
}
size = nrow-1; /* Get bottom match. */
while (size != offs) {
vp1 = vscreen[size-1];
vp2 = pscreen[size-1];
if (vp1->v_color != vp2->v_color
|| vp1->v_hash != vp2->v_hash)
break;
uline(size-1, vp1, vp2);
ucopy(vp1, vp2);
--size;
}
if ((size -= offs) == 0) /* Get screen size. */
abort();
setscores(offs, size); /* Do hard update. */
traceback(offs, size, size, size);
for (i=0; i<size; ++i)
ucopy(vscreen[offs+i], pscreen[offs+i]);
ttmove(currow, curcol);
ttflush();
return;
}
#endif
for (i=0; i<nrow-1; ++i) { /* Easy update. */
vp1 = vscreen[i];
vp2 = pscreen[i];
if ((vp1->v_flag&VFCHG) != 0) {
uline(i, vp1, vp2);
ucopy(vp1, vp2);
}
}
ttmove(currow, curcol);
ttflush();
}
/*
* Update a saved copy of a line,
* kept in a VIDEO structure. The "vvp" is
* the one in the "vscreen". The "pvp" is the one
* in the "pscreen". This is called to make the
* virtual and physical screens the same when
* display has done an update.
*/
ucopy(vvp, pvp)
register VIDEO *vvp;
register VIDEO *pvp;
{
register int i;
vvp->v_flag &= ~VFCHG; /* Changes done. */
pvp->v_flag = vvp->v_flag; /* Update model. */
pvp->v_hash = vvp->v_hash;
pvp->v_cost = vvp->v_cost;
pvp->v_color = vvp->v_color;
for (i=0; i<ncol; ++i)
pvp->v_text[i] = vvp->v_text[i];
}
/*
* Update a single line. This routine only
* uses basic functionality (no insert and delete character,
* but erase to end of line). The "vvp" points at the VIDEO
* structure for the line on the virtual screen, and the "pvp"
* is the same for the physical screen. Avoid erase to end of
* line when updating CMODE color lines, because of the way that
* reverse video works on most terminals.
*/
VOID uline(row, vvp, pvp)
VIDEO *vvp;
VIDEO *pvp;
{
#if MEMMAP
putline(row+1, 1, &vvp->v_text[0]);
#else
register char *cp1;
register char *cp2;
register char *cp3;
register char *cp4;
register char *cp5;
register int nbflag;
if (vvp->v_color != pvp->v_color) { /* Wrong color, do a */
ttmove(row, 0); /* full redraw. */
ttcolor(vvp->v_color);
cp1 = &vvp->v_text[0];
cp2 = &vvp->v_text[ncol];
while (cp1 != cp2) {
ttputc(*cp1++);
++ttcol;
}
return;
}
cp1 = &vvp->v_text[0]; /* Compute left match. */
cp2 = &pvp->v_text[0];
while (cp1!=&vvp->v_text[ncol] && cp1[0]==cp2[0]) {
++cp1;
++cp2;
}
if (cp1 == &vvp->v_text[ncol]) /* All equal. */
return;
nbflag = FALSE;
cp3 = &vvp->v_text[ncol]; /* Compute right match. */
cp4 = &pvp->v_text[ncol];
while (cp3[-1] == cp4[-1]) {
--cp3;
--cp4;
if (cp3[0] != ' ') /* Note non-blanks in */
nbflag = TRUE; /* the right match. */
}
cp5 = cp3; /* Is erase good? */
if (nbflag==FALSE && vvp->v_color==CTEXT) {
while (cp5!=cp1 && cp5[-1]==' ')
--cp5;
/* Alcyon hack */
if ((int)(cp3-cp5) <= tceeol)
cp5 = cp3;
}
/* Alcyon hack */
ttmove(row, (int)(cp1-&vvp->v_text[0]));
ttcolor(vvp->v_color);
while (cp1 != cp5) {
ttputc(*cp1++);
++ttcol;
}
if (cp5 != cp3) /* Do erase. */
tteeol();
#endif
}
/*
* Redisplay the mode line for
* the window pointed to by the "wp".
* This is the only routine that has any idea
* of how the modeline is formatted. You can
* change the modeline format by hacking at
* this routine. Called by "update" any time
* there is a dirty window.
*/
modeline(wp)
register WINDOW *wp;
{
register char *cp;
register int c;
register int n;
register BUFFER *bp;
n = wp->w_toprow+wp->w_ntrows; /* Location. */
vscreen[n]->v_color = CMODE; /* Mode line color. */
vscreen[n]->v_flag |= (VFCHG|VFHBAD); /* Recompute, display. */
vtmove(n, 0); /* Seek to right line. */
bp = wp->w_bufp;
if ((bp->b_flag&BFCHG) != 0) /* "*" if changed. */
vtputc('*');
else
vtputc(' ');
n = 1;
cp = "MicroEMACS"; /* Buffer name. */
while ((c = *cp++) != 0) {
vtputc(c);
++n;
}
if (bp->b_bname[0] != 0) {
vtputc(' ');
++n;
cp = &bp->b_bname[0];
while ((c = *cp++) != 0) {
vtputc(c);
++n;
}
}
if (bp->b_fname[0] != 0) { /* File name. */
vtputc(' ');
++n;
cp = "File:";
while ((c = *cp++) != 0) {
vtputc(c);
++n;
}
cp = &bp->b_fname[0];
while ((c = *cp++) != 0) {
vtputc(c);
++n;
}
}
if (curmsgf != FALSE /* Message alert. */
&& wp->w_wndp == NULL) {
while (n < ncol-5-1) {
vtputc(' ');
++n;
}
cp = "[Msg]"; /* Sizeof("[Msg]") = 5. */
while ((c = *cp++) != 0) {
vtputc(c);
++n;
}
}
while (n < ncol) { /* Pad out. */
vtputc(' ');
++n;
}
}
#if GOSLING
/*
* Compute the hash code for
* the line pointed to by the "vp". Recompute
* it if necessary. Also set the approximate redisplay
* cost. The validity of the hash code is marked by
* a flag bit. The cost understand the advantages
* of erase to end of line. Tuned for the VAX
* by Bob McNamara; better than it used to be on
* just about any machine.
*/
hash(vp)
register VIDEO *vp;
{
register int i;
register int n;
register char *s;
if ((vp->v_flag&VFHBAD) != 0) { /* Hash bad. */
s = &vp->v_text[ncol-1];
for (i=ncol; i!=0; --i, --s)
if (*s != ' ')
break;
n = ncol-i; /* Erase cheaper? */
if (n > tceeol)
n = tceeol;
vp->v_cost = i+n; /* Bytes + blanks. */
for (n=0; i!=0; --i, --s)
n = (n<<5) + n + *s;
vp->v_hash = n; /* Hash code. */
vp->v_flag &= ~VFHBAD; /* Flag as all done. */
}
}
/*
* Compute the Insert-Delete
* cost matrix. The dynamic programming algorithm
* described by James Gosling is used. This code assumes
* that the line above the echo line is the last line involved
* in the scroll region. This is easy to arrange on the VT100
* because of the scrolling region. The "offs" is the origin 0
* offset of the first row in the virtual/physical screen that
* is being updated; the "size" is the length of the chunk of
* screen being updated. For a full screen update, use offs=0
* and size=nrow-1.
*
* Older versions of this code implemented the score matrix by
* a two dimensional array of SCORE nodes. This put all kinds of
* multiply instructions in the code! This version is written to
* use a linear array and pointers, and contains no multiplication
* at all. The code has been carefully looked at on the VAX, with
* only marginal checking on other machines for efficiency. In
* fact, this has been tuned twice! Bob McNamara tuned it even
* more for the VAX, which is a big issue for him because of
* the 66 line X displays.
*
* On some machines, replacing the "for (i=1; i<=size; ++i)" with
* i = 1; do { } while (++i <=size)" will make the code quite a
* bit better; but it looks ugly.
*/
setscores(offs, size)
{
register SCORE *sp;
register int tempcost;
register int bestcost;
register int j;
register int i;
register VIDEO **vp;
register VIDEO **pp;
register SCORE *sp1;
register VIDEO **vbase;
register VIDEO **pbase;
vbase = &vscreen[offs-1]; /* By hand CSE's. */
pbase = &pscreen[offs-1];
score[0].s_itrace = 0; /* [0, 0] */
score[0].s_jtrace = 0;
score[0].s_cost = 0;
sp = &score[1]; /* Row 0, inserts. */
tempcost = 0;
vp = &vbase[1];
for (j=1; j<=size; ++j) {
sp->s_itrace = 0;
sp->s_jtrace = j-1;
tempcost += tcinsl;
tempcost += (*vp)->v_cost;
sp->s_cost = tempcost;
++vp;
++sp;
}
sp = &score[NROW]; /* Column 0, deletes. */
tempcost = 0;
for (i=1; i<=size; ++i) {
sp->s_itrace = i-1;
sp->s_jtrace = 0;
tempcost += tcdell;
sp->s_cost = tempcost;
sp += NROW;
}
sp1 = &score[NROW+1]; /* [1, 1]. */
pp = &pbase[1];
for (i=1; i<=size; ++i) {
sp = sp1;
vp = &vbase[1];
for (j=1; j<=size; ++j) {
sp->s_itrace = i-1;
sp->s_jtrace = j;
bestcost = (sp-NROW)->s_cost;
if (j != size) /* Cd(A[i])=0 @ Dis. */
bestcost += tcdell;
tempcost = (sp-1)->s_cost;
tempcost += (*vp)->v_cost;
if (i != size) /* Ci(B[j])=0 @ Dsj. */
tempcost += tcinsl;
if (tempcost < bestcost) {
sp->s_itrace = i;
sp->s_jtrace = j-1;
bestcost = tempcost;
}
tempcost = (sp-NROW-1)->s_cost;
if ((*pp)->v_color != (*vp)->v_color
|| (*pp)->v_hash != (*vp)->v_hash)
tempcost += (*vp)->v_cost;
if (tempcost < bestcost) {
sp->s_itrace = i-1;
sp->s_jtrace = j-1;
bestcost = tempcost;
}
sp->s_cost = bestcost;
++sp; /* Next column. */
++vp;
}
++pp;
sp1 += NROW; /* Next row. */
}
}
/*
* Trace back through the dynamic programming cost
* matrix, and update the screen using an optimal sequence
* of redraws, insert lines, and delete lines. The "offs" is
* the origin 0 offset of the chunk of the screen we are about to
* update. The "i" and "j" are always started in the lower right
* corner of the matrix, and imply the size of the screen.
* A full screen traceback is called with offs=0 and i=j=nrow-1.
* There is some do-it-yourself double subscripting here,
* which is acceptable because this routine is much less compute
* intensive then the code that builds the score matrix!
*/
VOID traceback(offs, size, i, j)
{
register int itrace;
register int jtrace;
register int k;
register int ninsl;
register int ndraw;
register int ndell;
if (i==0 && j==0) /* End of update. */
return;
itrace = score[(NROW*i) + j].s_itrace;
jtrace = score[(NROW*i) + j].s_jtrace;
if (itrace == i) { /* [i, j-1] */
ninsl = 0; /* Collect inserts. */
if (i != size)
ninsl = 1;
ndraw = 1;
while (itrace!=0 || jtrace!=0) {
if (score[(NROW*itrace) + jtrace].s_itrace != itrace)
break;
jtrace = score[(NROW*itrace) + jtrace].s_jtrace;
if (i != size)
++ninsl;
++ndraw;
}
traceback(offs, size, itrace, jtrace);
if (ninsl != 0) {
ttcolor(CTEXT);
ttinsl(offs+j-ninsl, offs+size-1, ninsl);
}
do { /* B[j], A[j] blank. */
k = offs+j-ndraw;
uline(k, vscreen[k], &blanks);
} while (--ndraw);
return;
}
if (jtrace == j) { /* [i-1, j] */
ndell = 0; /* Collect deletes. */
if (j != size)
ndell = 1;
while (itrace!=0 || jtrace!=0) {
if (score[(NROW*itrace) + jtrace].s_jtrace != jtrace)
break;
itrace = score[(NROW*itrace) + jtrace].s_itrace;
if (j != size)
++ndell;
}
if (ndell != 0) {
ttcolor(CTEXT);
ttdell(offs+i-ndell, offs+size-1, ndell);
}
traceback(offs, size, itrace, jtrace);
return;
}
traceback(offs, size, itrace, jtrace);
k = offs+j-1;
uline(k, vscreen[k], pscreen[offs+i-1]);
}
#endif